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Course Rationale

This course is about making decisions under uncertainty. We are always

uncertain about future events: will it rain tomorrow? But we still need

to make a decision: should I get my umbrella when I leave home?

Probability allows us to quantify our uncertainty. We all are familiar

with statements like “there is 20% chance it will rain tomorrow”. Still,

this has not solved the original question: is it worth caring the umbrella

around with me? This course will try to present a framework to give

answers to such questions.

We will start with a motivating example where we will be uncertain

on the best action to take and use it to calculate probabilities of events.

That is, we will answer questions such as “how likely is that it will rain

tomorrow?”. We will go a step further and answer more complicated

questions such as “how likely is that rain tomorrow given it is winter?”.

Finally, we will explore the framework that will allow us to make

decisions: “shall I get my umbrella, or not?”.

This course is aimed at students with interest in probability, decision

theory and making decision in the face of uncertainty.





Motivating example

You have just bought an old bicycle for £80. You can either buy a

Kryptonite lock for £20 or a cheap chain and lock for £8. You reckon it is

extremely unlikely anyone would bother stealing your bike if it is locked

with Kryptonite. But it is more probable if you buy a cheap chain. If the

bike is stolen, you will not bother to replace it. Which lock do you buy? 1 1 Ian Hacking. An Introduction to Proba-
bility and Inductive Logic Desk Examination
Edition. Cambridge University Press, 2001This is the example we will be using throughout this handbook. Each

chapter functions as a building block that will help us answer the final

question.

Chapter Outline

The 1st chapter introduces tree diagrams and 2 by 2 tables. These are

two ways to visualise information. They help answer questions like

“How likely is that my bike will be stolen?”. In other words, they help us

calculate probabilities of events.

In the 2nd chapter we will differentiate between categorical and

conditional probabilities. Briefly, for two events A and B, the categorical

probability answers the questions: “how likely is event A occurs?”. We

denote this P(A). The conditional probability reads as given the event

B has already happened how likely is event A will occur. We denote

this P(A given B). We will see how to use the tree diagram to calculate

conditional probabilities.

During the 3rd chapter we will introduce Bayes Rule. It follows

simply from conditional probability and allows us to calculate the inverse

probability, P(B given A). It is a simple formula that describes how to

update the probabilities of events when given evidence - how to learn
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from experience.

The 4th chapter will be dedicated to the concept of Value of an Act

and how to choose among different acts. We will see how to quantify

the gain of a consequence when an act is chosen and combine it with

probabilities (Chapters 1-3) to calculate the Value of the Act. We will

then be able to answer our initial question: Which lock do I buy?

The Appendix provides a more mathematically rigorous treatment

of the probability concepts used in the first 3 chapters. Readers are

encouraged to start reading it after going trough the first 3 chapters.



1st Chapter - The tree diagram

What is the purpose of the chapter?

• Introduce tree diagrams and 2 by 2 tables to visualise information.
Keywords: tree diagram, 2 by 2 table.

Read again the motivating example. A natural question that you

may have is: How do I know it is more probable for a cheap chain being

snipped? This is what we will focus on in this chapter. The answer is

simple, you probably have guessed. We will collect some data. I did

that for you. I went to the police station and asked them exactly this

question. They told me:

• there were 1000 registered bikes in the town,

• 400 bikes were stolen last year,

• out of those 400, 80 had Kryptonite locks,

• 360 out of the 600 non-stolen had Kryptonite locks.

Let’s visualise this information, see Figure 1.

This is called a tree diagram. It has two main parts: the branches and

the ends. The arrows are the branches. The purple boxes are the ends.

Their job is to connect the ends. Together they form paths. Each path

represents a possible outcome (e.g. stolen and Kryptonite lock). Figure 1

is read from left to right. Let’s see an example. We start we 1000 bicycles

and follow the Stolen branch. We see that 400 bicycles were stolen. We

then follow the upper branch, which corresponds to bicycles that had

Kryptonite locks. These were 80.

We can use the tree diagram to answer many questions of interest.

We just need to follow the arrows.



10

1000 Bicycles

600

240

Cheap Lock

360
Krypt

onite
Not Stolen

400

320

Cheap Lock

80
Krypt

onite

Stol
en

Figure 1: Tree diagram, with whole num-
bers.

1. How many stolen bikes had Kryptonite locks? 80.

2. How many non-stolen bikes had Kryptonite locks? 360.

3. How many bikes had Kryptonite locks? 360 + 80 = 440.

4. What proportion of the stolen bikes had Kryptonite locks? There

were 400 stolen bikes. Out of which 80 had Kryptonite locks. So, the

answer is 80
400 = 0.2.

5. What proportion of the stolen bikes had cheap locks?

What is a Tree Diagram? A tree diagram is simply a way of representing

a sequence of events. Tree diagrams are particularly useful in probability

since they record all possible outcomes in a clear and uncomplicated

manner. Tree diagrams allow us to see all the possible scenarios of an

event and calculate their probability. You just did this for question 4.

Each branch in a tree diagram represents a possible scenario.

Why are they called tree diagrams? Because the look like trees (see

Figure 2)! Do you see the branches?

Another way is to present the same information is to use a 2 by 2 table

(see Table 1). It has two rows and two columns, hence the name. The

rows describe the lock status, if the bike had Kryptonite lock or not. The

columns describe the stolen status, if the bike was stolen or not. Take

some time to familiarise yourself with the table and verify that it actually

presents the same information as the tree-diagram (Figure 1).
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Figure 2: A tree diagram.

Stolen

Yes No Total

Kryptonite
Yes 80 360 440

No 320 240 560

Total 400 600 1000

Table 1: 2 by 2 table.

Exercise 1

1. Try answering the same questions 1-5 as in page 10 using the 2 by

2 table (Table 1). Do you get the same answers?

2. A committee of 3 members is to be formed consisting of one repre-

sentative each from labour, management, and the public. If there

are 3 possible representatives from labour, 2 from management,

and 4 from the public, determine how many different committees

can be formed.

3. Dr. No has a patient who is very sick. Without further treatment,

this patient will die in about 3 months. The only treatment

alternative is a risky operation. The patient is expected to live

about 1 year if he survives the operation; however, the probability

that the patient will not survive the operation is 0.3. Draw a
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decision tree for this simple decision problem. Show all the

probabilities and outcome values.

4. Time to experiment: Toss a coin 20 times. Every time it comes up

heads roll a die and record the number. If it comes up tails, toss

once more and record the outcome (heads or tails). Use a tree

diagram to visualise the process and the results.



2nd Chapter - Conditional Probability

What is the purpose of the chapter?

• Differentiate between categorical and conditional probability.

• Use the tree diagram to calculate conditional probabilities.
Keywords: categorical probability, condi-
tional probability.

Let’s revisit the tree diagram (see Figure 3). Last time, we saw briefly

how to calculate proportions. We will spend a little bit more time now.

1

0.6

0.4

Cheap Lock240600

0.6

Kryp
toni

te

360
600

Not Stolen6001000

0.4

0.8

Cheap Lock320400

0.2

Kryp
toni

te

80
400

Sto
len

400
1000

Figure 3: Tree diagram, with proportions.

Those proportions are probabilities. We express probabilities in

numbers ranging between 0 and 1. You can read them as “the probability

that your bike will get stolen is 0.4”. I call this categorical probability.

Take a look at question 4 on page 10 once more. This is the probability

the bike has Kryptonite locks, conditional on being stolen. We call this
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conditional probability. The most important new idea in this chapter is

the probability that something happens, on condition that something

else happens. Here are a few examples: You have probably heard people say
things like:

• The chance of rain tomorrow is 75%.

• Based on how poorly the interview
went, it is unlikely I will get the job.

• In a drawer of ten socks, 8 of them yel-
low, there is a twenty percent chance
of choosing a sock that is not yellow.

All of these statements are about proba-
bility. We see words like "chance", "(un)
likely", "probably" since we do not know
for sure something will happen, but we
realise there is a very good chance that it
will.
Probabilities can be written as fractions,

decimals or percentages on a scale from 0

to 1. We will all three ways in this course.

Example: Categorical vs Conditional Probability
Categorical: What is the probability that it rains tomorrow?

Conditional: What is the probability that it rains tomorrow, given that

there have been rains on each of the 3 preceding days?

Categorical: What is the probability that my bike will get stolen?

Conditional: What is the probability that my bike will get stolen,

given I bought a cheap lock?

Notation

(It will be useful later)

Event S: bike Stolen

Event N: bike Not stolen

Even K: bike had Kryptonite lock

Even C: bike had cheap lock

Probability is represented: P( )

Examples of probability: P(bike stolen) = P(S) = 0.4 (see Figure 3)

I use the word given for conditional probabilities.

Example: Parking
If you park overnight near my home, and do not live on the block, you

may be ticketed for not having a permit for overnight parking. The

fine will be £20. But the street is only patrolled on average about once

a week. What is the probability of being fined? Apparently the street

is never patrolled on two consecutive nights. What is the probability

of being ticketed tonight, conditional on having been ticketed on this

street last night?

We will formally answer these questions in Chapters 3 and 4. For

now, try to spot the categorical and conditional probabilities.

Having gained some intuition on the difference between categori-
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cal and conditional probabilities our first definition follows. It is the

mathematical definition of conditional probability. For any two events A and B, we may
also define the new event (A and B),
called the intersection of A and B, to con-
sist of all outcomes that are both in A
and in B. That is, the event (A and B)
will occur only if both A and B occur.
Consider the experiment of flipping two
coins: if A = {(H, H), (H, T), (T, H)} is
the event that at least 1 head occurs and B
= {(H, T), (T, H), (T, T)} is the event that
at least 1 tail occurs, then (A and B) =
{(H, T), (T, H)}. We can then calculate
the probability of this new event, that is
P(A and B). Note this is the numerator of
the definition of conditional probability.

Definition: Conditional Probability

When P(B) > 0,

P(A given B) = P(A and B)
P(B)

.

This expression reads as “the probability A occurs given B has already

occurred is equal to the probability that both A and B occur divided

by the probability that B occurs.”* A and B can be any event you are

interested in. An example will make things more clear. For instance,

“what is the probability that the sidewalk is wet given that it rained

earlier”? If A is “the sidewalk is wet” and B is “it rained earlier,” the

expression reads as “the probability the sidewalk is wet given that it

rained earlier is equal to the probability that the sidewalk is wet and it

rains over the probability that it rains”. *This statement implies an explicit tem-
poral causality between A and B which
may not be valid in many contexts. Try
to think of some examples. In that case,
an appropriate interpretation should be
“P(A given B) = P(A = a given B = b) is
the probability of A being in state a under
the constraint that B is in state b”.

Note the constraint P(B) > 0. This means P(B) must be a positive

number, because we cannot divide by zero. But why is the rest of this

definition sensible? Some examples will suggest why.

Example: Ice Cream
70% of your friends like Chocolate, and 35% like Chocolate AND like

Strawberry. What percent of those who like Chocolate also like Straw-

berry? We are essentially asking for the probability that someone that

likes chocolate also likes Strawberry, P(Strawberry given Chocolate).

Using the definition of conditional probability:

P(Strawberry given Chocolate) = P(Chocolate and Strawberry)
P(Chocolate)

=
0.35
0.7

= 0.5.

So, 50% of your friends who like Chocolate also like Strawberry.
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Example:
Let A denote the event “student is female” and let B denote the event

“student is French”. In a class of 100 students suppose 60 are French,

and suppose that 10 of the French students are females. Find the

probability that if I pick a French student, it will be a girl, that is, find

P(A given B).

Since 10 out of 100 students are both French and female, then

P(A and B) = 10
100

.

Also, 60 out of the 100 students are French, so

P(B) = 60
100

.

So the required probability is

P(A given B) = P(A and B)
P(B)

=
10

100
60

100
=

1
6
= 0.167.

Example: Conditional Dice
Think of a fair die. We say the outcome of a toss is even if it falls 2, 4,

or 6 face up. Here is a conditional probability: P(6 given even).

In ordinary English: The probability that we roll a 6, on condition

that we rolled an even number. The conditional probability of sixes,

given evens.

With a fair die, we roll 2, 4, and 6 equally often. So 6 comes up a third

of the time that we get an even outcome.

P(6 given even) = 1
3 .

This fits our definition, because,

P(6 and even) = P(6) = 1
6 . (why this makes sense?, i.e. why P(6 and

even) = P(6) ?)

P(even) = 1
2 .

P(6 given even) =
1
6
1
2
= 1

3 .

A nice tutorial on how to draw prob-
ability tree diagrams can be found at
http://www.statisticshowto.com/

how-to-use-a-probability-tree-for-probability-questions/

In the previous example, it was straightforward to calculate P(6 and

http://www.statisticshowto.com/how-to-use-a-probability-tree-for-probability-questions/
http://www.statisticshowto.com/how-to-use-a-probability-tree-for-probability-questions/
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even). Sometimes this calculation is not easy. In the next one we will

make use of the tree diagram to help us.

*This means that I cannot predict which
urn you will choose. In other words, it
is equally likely to pick either. More pre-
cisely, the probability that you pick urn A
is equal to the probability that you pick
urn B. This must then be P(A) = P(B) =
0.5.

**A formal definition of independence of
two events is given in the Appendix.

Answering the question we have used the
following property: P(B and R) = P(R and
B). This is part of the commutative law that
says for two events R and B, the following
is valid: (B and R) = (R and B).

Example: Urns
Imagine two identical urns (think of them as large vases), each con-

taining red and green balls. Urn A has 80% red balls, 20% green, and

UrnBhas 60%green, 40% red. Youpick anurn at random*. Is it A or B?

Let’s draw balls from the urn and use this information to guess

which urn it is. After each draw, the ball drawn is replaced, it is put

back to the urn. Hence for any draw, the probability of getting red

from urn A is 0.8, and from urn B, the probability of getting red is 0.4.

Using the notation we introduced before:

• P(R given A) = 0.8 (this is the conditional probability of drawing a

red ball given you picked urn A),

• P(R given B) = 0.4, (this is the conditional probability of drawing a

red ball given you picked urn B),

• P(A) = P(B) = 0.5, (this is the categorical probability of picking urn

AorB. It is random. In otherwords, it is equally likely to pick either).

You draw a red ball. We want to find P(A given R), which is P(A

and R)/P(R). (This is the definition of conditional probability).

You can get a red ball from either urn A or urn B. In other words,

you chose urn A and draw a red ball, this is (A and R) or you chose

urn B and draw a red ball, that is (B and R), the two events are

independent**, so we can write

P(R) = P(A and R) + P(B and R).

The probability of getting urn B is 0.5; the probability of getting a

red ball from it is 0.4, so that the probability of both happening is

P(B and R) = P(R and B) = P(R given B) × P(B) = 0.4 × 0.5 = 0.2 (from

the definition of conditional probability).
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Likewise, P(A and R) = 0.8 × 0.5 = 0.4.

So, P(R) = P(A and R) + P(B and R) = 0.4 + 0.2 = 0.6.

Now we have all the ingredients we need to calculate P(A given R),

which is

P(A given R) = P(A and R)
P(R)

=
0.4
0.6

=
2
3

.

Let’s draw the calculation. We start out with our coin and the two

urns. How can we get to a red ball? There are two routes. We can toss

a heads (probability 0.5), giving us urn A. Then we can draw a red

ball (probability 0.8). That is the route shown here on the top branch.

We can also get an R by tossing tails, going to urn B, and then drawing

a red ball, as shown on the bottom branch. We get to R on one of the

two branches. So the total probability of ending up with R is the sum

of the probabilities at the end of each branch. Here it is 0.4 + 0.2 = 0.6.

The probability of getting to an R following branch A is 0.4. Thus that

part of the probability that gets you to R by A, namely P(A given R) =

0.4/0.6 = 2/3. We got the same answer!

1

0.5 0.4 P(B and R)= 0.5 × 0.4 = 0.2Red ball
P(R given B)

Urn BP(B)

0.5 0.8 P(A and R) = 0.5 × 0.8 = 0.4Red ball
P(R given A)

Urn
A

P(A
)

Exercise 2

1. I have transformed our initial tree diagram (Figure 1) to a proba-

bility tree diagram (Figure 3), like the one above. Use it to calculate

the following conditional probabilities:

• P(Kryptonite lock given Stolen)

• P(Cheap lock given Stolen)

• P(Kryptonite lock given Not Stolen)
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• P(Cheap lock given Not Stolen).

2. A fair die is tossed twice. Find the probability of getting a 4, 5, or

6 on the first toss and a 1, 2, 3, or 4 on the second toss.

3. Two cards are drawn from a well-shuffled ordinary deck of 52

cards. Find the probability that they are both aces if the first card

is (a) replaced, (b) not replaced.

4. More practice with tree diagram and conditional probabilities: Go

tohttps://www.mathsisfun.com/data/probability-tree-diagrams.

html. After reading the examples, solve the questions at the bot-

tom of the webpage.

https://www.mathsisfun.com/data/probability-tree-diagrams.html
https://www.mathsisfun.com/data/probability-tree-diagrams.html




3rd Chapter - Bayes Rule

What is the purpose of the chapter?

• Introduce Bayes Rule.
Keywords: Bayes Rule.

The previous chapter ended with two examples of the same form:

urns and dice. The numbers were changed a bit, but the problems in

each case were identical. Then we asked, what is the probability that the

urn drawn was A, conditional on drawing a red ball? We asked for:

P(A given R) = ?

Similarly, in our bike theft example we asked for,

P(K given S) = ?

In Chapter 2 we solved these problems directly from the definition of

conditional probability. There is an easy rule for solving problems like

that. It is called Bayes’ Rule. Bayes’ Rule is named after Thomas
Bayes (1702-1761), an English minis-
ter who was interested in probabil-
ity. Bayes never published what would
become his most famous accomplish-
ment; his notes were published after his
death. Check https://en.wikipedia.
org/wiki/Thomas_Bayes

Definition: Bayes Rule

P(A given B) =
P(A)P(B given A)

P(B)

=
P(A)P(B given A)

P(A)P(B given A) + P(Ac)P(B given Ac)

For the last equality in Bayes
Rule we used the following:
P(B) = P(A)P(B given A) +

P(Ac)P(B given Ac). First, the no-
tation Ac, refers to as the complement
of A, to consist of all outcomes not in A.
That is, Ac will occur if and only if A does
not occur.
Inwords, the denominator of Bayes Rule

states that the probability of the event B

is a weighted average of the conditional
probability of B given that A has occurred
and the conditional probability of B given
that A has not occurred. More details are
given in the Appendix on page 43.

Example: Urns
Here is the urn problem from page 17. Imagine two urns, each

containing red and green balls. Urn A has 80% red balls, 20% green,

and Urn B has 60% green, 40% red. You pick an urn at random, and

then draw balls from the urn in order to guess which urn it is. After

each draw, the ball drawn is replaced back to the urn. Hence for any

draw, the probability of getting red from urn A is 0.8, and from urn B

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Thomas_Bayes
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it is 0.4.

• P(R given A) = 0.8

• P(R given B) = 0.4

• P(A) = P(B) = 0.5

You draw a red ball. What is P(A given R)?

Solution by Bayes’ Rule:

P(A given R) =
P(A)P(R given A)

P(A)P(R given A) + P(B)P(R given B)

=
(0.5× 0.8)

(0.5× 0.8) + (0.5× 0.4)
=

2
3

.
(1)

This is the same answer as was obtained on page 17.

Take a look at the denominator of equation
(1) on the left and compare it with the
denominator of Bayes Rule in the previous
page. Verify they are the same. That is:

P(A)P(R given A) + P(B)P(R given B)

= P(A)P(R given A)+ P(Ac)P(R given Ac) = P(R)

Bayes Rule allowed us to answer the “inverse” question. We knew P(R

given A) and wanted to know P(A given R). Do you see the difference?

We started with the probability of getting a red ball given we chose urn

A - P(R given A) - and we asked for the probability of drawing from urn

A given that we drew a red ball - P(A given R).

Card example from https://brilliant.
org/wiki/bayes-theorem/

Example: Cards
If a single card is drawn from a standard deck of playing cards, the

probability that the card is a queen is 4/52, since there are 4 queens

in a standard deck of 52 cards. Rewording this,

P(Queen) = 4
52

=
1
13

.

If evidence is provided (for instance, someone looks at the card)

that the single card is a face card, then the probability P(Queen given

Face) can be calculated using Bayes’ Rule:

P(Queen given Face) = P(Queen)P(Face given Queen)
P(Face)

Since every Queen is also a face card, P(Face given Queen)= 1. Since

there are 3 face cards in each suit (Jack, Queen, King), the probability

of a face card is P(Face) = 3
13 . Using Bayes Rule gives P(Queen given

Face) = 1
3 .

https://brilliant.org/wiki/bayes-theorem/
https://brilliant.org/wiki/bayes-theorem/
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Example: Spiders
A tarantula is a large, fierce-looking, and somewhat poisonous tropi-

cal spider. Once upon a time, 3% of consignments of bananas from

Honduras were found to have tarantulas on them, and 6% of the con-

signments from Guatemala had tarantulas. 40% of the consignments

came from Honduras. 60% came from Guatemala. A tarantula was

found on a randomly selected lot of bananas. What is the probability

that this lot came from Guatemala?

Let G = The lot came from Guatemala. P(G) = 0.6.

Let H = The lot came from Honduras. P(H) = 0.4.

Let T = The lot had a tarantula on it.

• P(T given G) = 0.06.

• P(T given H) = 0.03.

P(G given T) = P(G)P(T given G)
P(G)P(T given G) + P(H)P(T given H)

P(G given T) = (0.6× 0.06)
[(0.6× 0.06) + (0.4× 0.03)]

=
3
4

.

I will stress again the “beauty” (in my opinion) of Bayes Rule. It

allowed us to transition from P(T given G) to P(G given T) in the spider

example. Note these are two different things! P(T given G) answers the

question: “If I knew the bananas came from Guatemala, what is the

probability I find tarantulas?”. If I see a tarantula on the banana this

question is useless. Then, I want to know “What is the probability the

bananas came from Guatemala, given I found a tarantula?” - this is P(G

given T). You may not care about this, but if you owned a grocery store

you would not like to order bananas from Guatemala. The probability is

quite high, 3
4 .

One application of Bayes’ Rule is in spam filtering. It refers to the

automatic processing of incoming messages and categorizing them as

spam (unwanted email) or not. Have you ever wonder how this works? For more details see https:

//en.wikipedia.org/wiki/Naive_

Bayes_spam_filtering

https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
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Example: Spam Filtering
We want to know the probability an email is spam given it contains

certain words:

P(spam given words) = P(words given spam)P(spam)

P(words)
.

Bayes Rule allows us to predict the chance a message is really spam

given the “test results” (the presence of certain words). Spam filtering

based on a just the presence of certain words in the email is flawed -

it’s too restrictive and false positives are too great. But filtering using

Bayes Rule gives us a middle ground - we use probabilities. As we

analyze the words in a message, we can compute the chance it is spam

(rather thanmaking a yes/no decision). If a message has a 99% chance

of being spam, it probably is.
Bayes Rule on Wikipedia
https://en.wikipedia.org/wiki/

Bayes%27_theorem

Thus, looking at the denominator:

P(E) =
k

∑
i=1

[P(Ai)P(E given Ai)]

shows how, for given events
A1, A2, A3, . . . , Ak, of which one
and only one must occur, we can compute
P(E) by first conditioning on which one
of the Ai occurs. That is, P(E) is equal to a
weighted average of P(E given Ai), each
term being weighted by the probability
of the event on which it is conditioned.
Same story are the simpler version of
Bayes Rule.

Generalisation of Bayes Rule

The same formula holds for any number of mutually exclusive and jointly

exhaustive events:

A1, A2, A3, . . . , Ak.

Mutually exclusive means that only one of the events can be true. Jointly

exhaustive means that at least one must be true. By extending the Bayes

Rule, if P(E) > 0, and for every i, P(Ai) > 0, we get for any event Ak,

P(Aj given E) =
P(Aj)P(E given Aj)

P(E)

=
P(Aj)P(E given Aj)

∑k
i=1[P(Ai)P(E given Ai)]

.

Here the ∑ (the Greek capital letter sigma) stands for the sum of

the terms with subscript i. Add all the terms [P(Ai)P(E given Ai)] for

i = 1, i = 2, up to i = k.

Exercise 3

1. The probability that it is Friday and that a student is absent is

0.03. Since there are 5 school days in a week, the probability that

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Bayes%27_theorem
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it is Friday is 0.2. What is the probability that a student is absent

given that today is Friday?

2. Calculate the P(H given T) for the spider example above. What do

you conclude? If a tarantula was found on a lot, would it be more

likely the bananas were coming from Honduras or Guatemala?

3. Calculate the following conditional probabilities from our moti-

vating example:

• P(Stolen given Kryptonite lock)

• P(Stolen given Cheap lock)

• P(Not Stolen given Kryptonite lock)

• P(Not Stolen given Cheap lock).

What do you conclude? Write a few sentences comparing the

above probabilities. Focus on their interpretations.

4. A family has two children. Given that one of the children is a boy,

what is the probability that both children are boys?





4th Chapter - Making decisions

What is the purpose of the chapter?

• Calculate the Expected Value of an Act.

• Introduce the Value Rule: How to choose among different acts?

• Provide guidelines how to set-up and solve decision problems.
Keywords: Expected Value of an Act,
Value Rule

Uncertainty is everywhere. We are not just uncertain about what will

happen, or what is true, but also when we are uncertain about what to

do. Until now we used probability to quantify how uncertain we are. In

this chapter we will see how we can use this to make decisions. We will

see that decisions need more than probability. They are based on the

value of possible outcomes.

Decisions depend on acts and consequences. For example,

Should you open a small business?

Should you take an umbrella?

Should you buy a Lotto ticket?

In each case you settle on an act. Doing nothing at all counts as an act.

Acts have consequences.

You go broke (or maybe found a great company).

You stay dry when everyone else is sopping wet (or you mislay your

umbrella).

You waste a pound (or perhaps win a fortune).
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Suppose you can represent the cost or benefit of a possible consequence

by a number - so many pounds, perhaps. Call that number the utility

of the consequence. We have all the ingredients to define the Expexted

Value of an Act.

Definition: Expected Value of an Act

Consider an Act with just two possible consequences

Act: A

Consequences: C1, C2

Utility: U1, U2

Probabilities: P(C1 given A) and P(C2 given A).

Expected Value of A = Exp(A) = [P(C1 given A)][U1] + [P(C2

given A)][U2].

If you choose act A, the possible consequences are C1 and C2. If C1

happens you have an utility of U1. If C2 happens you have an utility of

U2. Note the utility can be negative also. This means we incur a loss.

Also the utility can be zero (see the example that follows). It is clear

from the definition you need to multiply the utility of each consequence

with its probability. Note this is a conditional probability, so you have to

calculate it first. This was the purpose of the first 3 chapters.

Example: Ticket
Your aunt offers you a free lottery ticket for your birthday, but says

you do not have to take it. The two possible acts are: accept, and do

not accept. The value of not accepting is just 0, you don’t gain or lose

anything. What is the value of accepting? Suppose the lottery has

100 tickets, with a prize of £50 for the one ticket that is drawn. If you

accept the ticket, there are two possible consequences:

Consequence 1: Your ticket is drawn.

Utility of Consequence 1: £50.

Probability of Consequence 1: 0.01.

Consequence 2: Your ticket is not drawn.

Utility of Consequence 2: 0.

Probability of Consequence 2: 0.99.
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Exp(accepting the ticket) = (0.01)(£50) + (0.99)(0) = 50p.

Exp(not accepting) = 0.

How do you choose among possible acts? The most common decision

rule is an obvious one.

Rule: Value Rule

Act so as to maximize value. Perform the action with the highest

expected value.

So, accept your aunt’s offers!

Example: Parking example
You are staying overnight with friends. They live on a crowded city

street, where curbside parking is restricted to residents with parking

decals on their cars. You have driven a car, but there is no place nearby

where you can park legally without paying. There is a nearby lot that

charges £3 a night. It is the middle of winter, freezing cold. It is a

half-hour walk to the nearest likely free spot. Your friends say: Just

park on the street. It is patrolled about only once every ten days, so

the probability of getting a ticket is only 0.1. The fine is £20, and you

always pay parking fines in order to renew your license. What is the

expected value of parking illegally? It will be a negative value.

I: Park illegally.

L: Park in the lot.

T: You get a ticket.

P: You pay £3.

P(T given I) = 0.1.

If you valued only the cash loss (and discounted the inconvenience of

getting a ticket), the benefit of parking illegally would be -£20. The

value of the act, park illegally, would be:

Exp(I) = (0.1)( -£20) + (0.9)(£0) = -£2.

There are no uncertainties about parking in the lot. If you valued only

the cash expense, the expected value of the act, park in the lot is -£3.

What to do?
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The value rule gives clear advice. Act so as to maximise expected

value. The highest value you can expect is -£2. So, park illegally. That

is not the end of the matter. Some people think it is wrong to break the

law-any law. Other people might think the law is not so important, but

it is wrong to harm other people, for example, by taking the parking

place of a local resident.

Finally, its is time to answer the question we started with: Which lock

should you buy?

Example: Bicycle
Act K: Buy a Kryptonite lock.

Act L: Buy a cheap chain and lock.

Consequence S: your bike is stolen.

Consequence N: your bike is not stolen.

If you bike gets stolen you have a cost of -£80. This is the cost of the

bike. You have already spent your money, so the further benefit of

not losing your bike is 0.

Exp(K) = [P(S given K)][−£80− £20]+ [P(N given K)][0− £20] = 0.18(−£100)+ 0.82(−£20) = −£34.4

Exp(L) = [P(S given L)][−£80− £8]+ [P(N given L)][0− £8] = 0.57(−£88)+ 0.43(−£8) = −£53.6.

So if you want to maximise value, you should buy the Kryptonite lock.

Generalisation of Expected Value Rule

The Expected Value Rule was given for an act with only two possible

consequences. This can be expended as follows. Consider an Act with n

possible consequences:

Act: A

Consequences: C1, C2, . . . , Cn
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Utilities: U1, U2, . . . , Un

Probabilities: P(C1 given A), P(C2 given A), . . . , P(Cn given A)

Expected Value of A = Exp(A) = ∑n
i=1[P(Ci given A)][Ui]

Setting up and solving a decision problem 2 2 Andrew Gelman and Deborah Nolan.
Teaching statistics: A bag of tricks. Oxford
University Press, 2017The process of setting up and solving a decision problem can be

broken down into 6 steps.

1. Goals and decision options. The first step is to define your goals.

Question to answer: “What do I want to achieve”?. In our mo-

tivating example (page 7), the goal was to decide which lock to

buy.

2. Define the possible acts, the consequences of each act and their

utilities. In our motivating example, the possible acts were “buy a

Kryptonite lock” or “buy a cheap chain”. The consequences were

“the bike is stolen” or “your bike is not stolen”. If the bike was

stolen there is no gain but a loss of -£80 (the price of the bike) and

a further loss of -£20 (if you had bought the Kryptonite lock) or -£8

(if you had bought the cheap lock). The gain of not losing the bike

is 0.

3. Set up a tree diagram (like the ones in Figures 1 and 3).

4. Use the tree diagram to calculate probabilities. For this step you

need to collect some data.

5. Evaluate the tree. Now you can solve the decision problem. You

have all the ingredients.

6. Understanding the result. What is the recommended decision?

Does it make sense?

An example using these steps follows.

Example: Gardening
You have a garden at your home. You really like gardening and decide

to plant potatoes and carrots. Unfortunately, you don’t have enough

space for both. You have to pick one. First you need to buy the seeds.

The potato seeds cost £10. The carrot seeds cost £8. You also need to
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water the plants: this will cost you about £20 (from the time you plant

the seeds until you start harvesting). There is another problem: winter

is coming and the plants may not survive. You decide to consult the

internet and find a research project where the scientists compared

potatoes’ and carrots’ resistance to cold. This is what they found:

About 60% of plants die during winter. Of those that die, 30% are

potatoes and 70% carrots. Of those that survive, 60% are potatoes and

40% are carrots. Now based on this information, which one one do

you choose to plant?

1. The first step is to define the goal and the decision options. This is

straightforward, the goal is to choose between planting potatoes or

carrots.

2. Step 2 requires us to define the possible acts, the consequences of

each act and their gains.

Acts:

1. Plant potatoes.

2. Plant carrots.

Consequences:

1. Plant dies during the winter.

2. Plant survives.

Gains:

1. If the potatoes die you lose the £10 and the watering costs of £20.

2. If the carrots die you lose £8 and the watering costs of £20.

3. If either survive you have “lost” only the watering cost of £20.

3. For step 3 we need to draw a tree diagram:
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4. For the 4th step we need to calculate the conditional probabilities.

If we plant potatoes we need to know the probabilities that they die

and survive. We need to know the P(Survive given Potatoes) and

the P(Die given Potatoes). Similarly, if we plant carrots we want

P(Survive given Carrots) and the P(Die given Carrots).

Based on Bayes Rule

P(Survive given Potatoes) = P(Survive)P(Potatoes given Survive)
P(Survive)P(Potatoes given Survive) + P(Die)P(Potatoes given Die)

.

We already have all the pieces from the tree diagram):

• P(Survive) is the probability that a plant survives, this is 0.4.

• P(Potatoes given Survive) is the probability that a plant that

survives is potatoes: this is 0.6.

• P(Dies) = 0.6.

• P(Potato given Die) is the probability that a plant that dies is



34

potatoes: this is 0.3. So,

P(Survive given Potatoes) = 0.4× 0.6
0.4× 0.6 + 0.6× 0.3

= 0.57

In a similar fashion we calculate the other probabilities.

• P(Die given Potatoes) = 0.43

• P(Survive given Carrots) = 0.28

• P(Die given Carrots) = 0.72

5. Now we can calculate the Expected Value of each act:

• Exp(Plant Potatoes) = [P(Survive given Potatoes)][-£20] + [P(Die

given Potatoes)][-£20-£10] = [0.57] [-£20] + [0.43] [-£20-£10] =

-£24.3

• Exp(Plant Carrots) = [P(Survive given Carrots)][-£20] + [P(Die

given Carrots)][-£20-£8] = [0.28][-£20] + [0.72] [-£20-£8] = -£25.8

The Value Rule says choose the act with the highest expected value.

So plant potatoes!

6. Discussion: This is a somewhat expected result because the costs

are quite similar. We need to spend £10 for potato seeds and £8 for

carrot seeds. So we should expect our result to be driven mainly by

the conditional probabilities. In fact, this was the case. The carrots

are much more likely to die than the potatoes.

Exercise 4

1. Perform the calculations from the gardening example and verify

you get the same results. More specifically, calculate:

• P(Die given Potatoes).
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• P(Survive given Carrots).

• P(Die given Carrots).

2. Louis plans to set up a new ice-cream business by the seaside.

But where should he set up his first stall? If he sets up shop

at the Beach Cafe (C), the weather won’t matter. On the other

hand, if he puts his stall on the beach (B), he’ll do much better

if it’s sunny, but much worse if it rains (fewer people go to the

beach when it rains). Based on the previous years’ weather the

probability of rain is 0.3. Both locations are equally attractive to

Luis. In other words, P(C) = P(B) = 0.5. This means that Luis has

no preference between B and C initially. Now decide where Louis

should put his first ice-cream stall. The table below tells you how

many pounds he can expect to make per day in each location:

Rain Sunny

Beach, B 88 268

Beach cafe, C 100 100

3. For Exercise 3 on page 11. Let U(x) denote the patient’s utility

function, where x is the number of months to live. Assuming

that U(12) = 1.0 and U(0) = 0, how low can the patient’s utility

for living 3 months be and still have the operation be preferred?

4. A state lottery sells tickets for a cost of £1 each. The ticket has a

probability of 1/(2,400,000) of winning £1,000,000, and otherwise

nothing.

1. What is the expected profit of the state from each ticket

sold?

2. In the hope of increasing profits, the state considers to

increase the award to £2,000,000 and to reduce the proba-

bility of winning to 1/(4,800,000). Do you think it’s worth

the trouble?
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Appendix

This is a more mathematically rigorous overview of probability. We only

present concepts relevant to this course. We introduce the concept of the

probability of an event and then showhowprobabilities can be computed

in certain situations. We introduce one of the most important concepts

in probability theory, that of conditional probability. The importance

of this concept is twofold. In the first place, we are often interested

in calculating probabilities when some partial information concerning

the result of an experiment is available; in such a situation, the desired

probabilities are conditional. Second, even when no partial information

is available, conditional probabilities can often be used to compute the

desired probabilities more easily. We then present Bayes rule from a

slightly non conventional point of view. We finish with the notion of

independent events. As a preliminary, however, we need the concept of

the sample space and the events of an experiment.

The sample space and events

Consider an experiment whose outcome is not predictable with certainty.

However, although the outcome of the experiment will not be known in

advance, let us suppose that the set of all possible outcomes is known.

This set of all possible outcomes of an experiment is known as the sample

space of the experiment and is denoted by S.

For example, if the outcome of an experiment consists in the determi-

nation of the sex of a newborn child, then

S = {g, b}

where the outcome g means that the child is a girl and b that it is a boy.
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Any subset E of the sample space is known as an event. In other words,

an event is a set consisting of possible outcomes of the experiment. If

the outcome of the experiment is contained in E, then we say that E has

occurred. In the preceding example, if E = {g}, then E is the event that

the child is a girl. Similarly, if F = {b}, then F is the event that the child

is a boy.

Finally, for any event E, we define the new event Ec, referred to as the

complement of E, to consist of all outcomes in the sample space S that

are not in E. That is, Ec will occur if and only if E does not occur. In our

example, Ec = {b}. The only outcome that is not in E = {g} is the event
the child is a boy.

Axioms Of Probability

Consider an experiment whose sample space is S. For each event E of

the sample space S, we define P(E) as the probability of the event E.

(P is called a probability function). We assume that P(E) satisfies the

following three axioms.

1. 0 ≤ P(E) ≤ 1

2. P(S) = 1

3. For any number of mutually exclusive events E1, E2, . . . ,

P(E1 or E2 or . . . ) = P(E1) + P(E2) + · · · =
∞

∑
i=1

P(Ei)

Mutually exclusive means that only one of the events can be true

(see also side note next page). In particular, for two mutually

exclusive events E1, E2,

P(E1 or E2) = P(E1) + P(E2)

Axiom 1 states that the probability that the outcome of the experiment

is an outcome in E is some number between 0 and 1. Axiom 2 states

that, with probability 1, the outcome will be a point in the sample space

S. Axiom 3 states that, for any sequence of mutually exclusive events,
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the probability of at least one of these events occurring is just the sum of

their respective probabilities.

For instance, if our experiment consists of tossing a coin and if we

assume that a head is as likely to appear as a tail, then we would have

P({H}) = P({T}) = 1
2

On the other hand, if the coin were biased and we felt that a head

were twice as likely to appear as a tail, then we would have

P({H}) = 2
3

; P({T}) = 1
3

Some simple propositions

In this section, we give some simple propositions regarding probabilities.

1.

P(Ec) = 1− P(E)

In words, the probability that an event does not occur is 1 minus

the probability that it does occur. For instance, if the probability of

obtaining a head on the toss of a coin is 3/8, then the probability

of obtaining a tail must be 5/8.

2.

P(E or F) = P(E) + P(F)− P(E and F)

In words, this proposition gives the relationship between the

probability of the union of two events, expressed in terms of the

individual probabilities, and the probability of the intersection of

the events.

For any two events E and F of a sample
space S, we define the new event (E or F)
to consist of all outcomes that are either
in E or in F or in both E and F. That is, the
event (E or F) will occur if either E or F

occurs. For instance, for the sex of a child
example, if event E = {g} and F = {b},
then

(E or F) = {g, b}

The event (E or F) is called the union of
the event E and the event F.

Similarly, for any two events E and F, we
may also define the new event (E and F),
called the intersection of E and F, to consist
of all outcomes that are both in E and in
F. That is, the event (E and F) will occur
only if both E and F occur. For instance,
for the sex of a child example

(E and F) = null

Thismeans that E and F does not contain
any outcomes and hence could not occur.
A child cannot be a boy and a girl at the
same time (for our purposes). We call this
the null event. If (E and F) = null, then E

and F are said to be mutually exclusive.

An example: J is taking two books along on her holiday vacation.

With probability 0.5, she will like the first book; with probability 0.4, she

will like the second book; and with probability 0.3, she will like both

books. What is the probability that she likes neither book?

Let B1 denote the event that J likes book 1, and B2 the event that J likes

book 2. Then the probability that she likes at least one of the books is

P(B1 or B2) = P(B1) + P(B2)− P(B1 and B2) = 0.6
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Because the event that J likes neither book is the complement of the

event that she likes at least one of them, we obtain the result

P(Bc
1 and Bc

2) = P((B1 or B2)
c) = 1− P(B1 or B2) = 0.4

The second equality comes from DeMorgan’s laws. They provide

useful relationships between the three basic operations of formingunions,

intersections, and complements. Imagine two event E1 and E2 then

(E1 or E2)
c = Ec

1 and Ec
2

and

(E1 and E2)
c = Ec

1 or Ec
2

These can be generalised to any number of events.

Conditional probabilities

Here we give the definition. Intuition behind it is given in chapter 2. Let

E and F denote, two events. If P(F) > 0, then

P(E given F) =
P(E and F)

P(F)
(2)

It is read as the (conditional) probability that E occurs given that F

has occurred. Let’s see an example.

A student is taking a one-hour-time-limit makeup examination. Sup-

pose the probability that the student will finish the exam in less than

x hours is x/2, for all 0 ≤ x ≤ 1. Then, given that the student is still

working after 0.75 hour, what is the conditional probability that the full

hour is used?

Let Lx denote the event that the student finishes the exam in less than

x hours, 0 ≤ x ≤ 1, and let F be the event that the student uses the full

hour. Because F is the event that the student is not finished in less than

1 hour,

P(F) = P(Lc
1) = 1− P(L1) = 0.5
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Now, the event that the student is still working at time 0.75 is the

complement of the event L0.75, so the desired probability is obtained

from

P(F give Lc
0.75) =

P(F and Lc
0.75)

P(Lc
0.75)

=
P(F)

1− P(L0.75)
= 0.8

A useful expression for the probability of the intersection of an

arbitrary number of events, is sometimes referred to as the multiplication

rule.

P(E1 and E2 and . . . and En) = P(E1)P(E2 given E1)P(E3 given E1 and E2) . . . P(En given E1 . . . En−1)

In particular, for two events E and F,

P(E and F) = P(F)P(E given F)

This comes from multiplying both sides of Equation (2) by P(F). In

words, it states that the probability that both E and F occur is equal to

the probability that F occurs multiplied by the conditional probability

of E given that F occurred. It is often quite useful in computing the

probability of the intersection of events.

Bayes Formula

Let E and F be events. We may express E as

E = [(E andF) or (E and Fc)]

for, in order for an outcome to be in E, it must either be in both E

and F or be in E but not in F. As (E and F) and (E and Fc) are clearly

mutually exclusive, we have, by Axiom 3,

P(E) = P(E and F) + P(E and Fc)

= P(E given F)P(F) + P(E given Fc)P(Fc)

= P(E given F)P(F) + P(E given Fc)[1− P(F)]
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In words, it states that the probability of the event E is a weighted

average of the conditional probability of E given that F has occurred

and the conditional probability of E given that F has not occurred—each

conditional probability being given as much weight as the event on

which it is conditioned has of occurring. This is an extremely useful

formula, because its use often enables us to determine the probability of

an event by first “conditioning” upon whether or not some second event

has occurred. That is, there are many instances in which it is difficult

to compute the probability of an event directly, but it is straightforward

to compute it once we know whether or not some second event has

occurred. We illustrate this idea with two examples.

1st example: An insurance company believes that people can be

divided into two classes: those who are accident prone and those who

are not. The company’s statistics show that an accident-prone person

will have an accident at some time within a fixed 1-year period with

probability 0.4, whereas this probability decreases to .02 for a person

who is not accident prone. If we assume that 30 percent of the population

is accident prone, what is the probability that a new policyholder will

have an accident within a year of purchasing a policy?

We shall obtain the desired probability by first conditioning upon

whether or not the policyholder is accident prone. Let A1 denote

the event that the policyholder will have an accident within a year of

purchasing the policy, and let A denote the event that the policyholder

is accident prone. Hence, the desired probability is given by

P(A1) = P(A1 given A)P(A)+ P(A1 given Ac)P(Ac) = (0.4)(0.3)+ (0.2)(0.7) = 0.26

2nd example: At a certain stage of a criminal investigation, the inspector

in charge is 60 percent convinced of the guilt of a certain suspect. Suppose,

however, that a new piece of evidence which shows that the criminal has

a certain characteristic (such as left-handedness, baldness, or brown hair)

is uncovered. If 20 percent of the population possesses this characteristic,

how certain of the guilt of the suspect should the inspector now be if it

turns out that the suspect has the characteristic?

Letting G denote the event that the suspect is guilty and C the event

that he possesses the characteristic of the criminal, we have
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P(G given C) =
P(G and C)

P(C)

=
P(C given G)P(G)

P(C given G)P(G) + P(C given Gc)P(Gc)

= 1(0.6)1(0.6) + (0.2)(0.4) = 0.882

where we have supposed that the probability of the suspect having

the characteristic if he is, in fact, innocent is equal to 0.2, the proportion

of the population possessing the characteristic.

Essentially the second equality is Bayes
Rule as given in chapter 3. It should be
obvious by the construction that Bayes
Rule is nothingmore than a reformulation
of the definition of conditional probability.

Independent events

The previous examples of this chapter show that P(E given F), the

conditional probability of E given F, is not generally equal to P(E),

the unconditional probability of E. In other words, knowing that F

has occurred generally changes the chances of E’s occurrence. In the

special cases where P(E given F) does in fact equal P(E), we say that E

is independent of F. That is, E is independent of F if knowledge that F

has occurred does not change the probability that E occurs. Since

P(E given F) =
P(E and F)

P(F)
,

it follows that E is independent of F if

P(E and F) = P(E)P(F) (3)

The fact that this equation (3) is symmetric in E and F shows that

whenever E is independent of F, F is also independent of E. We thus have

the following definition: Two events E and F are said to be independent

if equation (3) holds. Two events E and F that are not independent are

said to be dependent. This can be generalised to more than two events.

Example: A card is selected at random from an ordinary deck of 52

playing cards. If E is the event that the selected card is an ace and F is

the event that it is a spade, then E and F are independent. This follows

because P(E and F) = 1
52 , whereas P(E) = 4

52 and P(F) = 13
52 .

Conditional probabilities satisfy all of the properties of ordinary

probabilities. So P(E given F) satisfies the three axioms of a probability.
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1. 0 ≤ P(E given F) ≤ 1

2. P(S given F) = 1

3. For any numner of mutually exclusice events E1, E2, . . .

P((E1 given F) or (E2 give F), or . . . ) =
∞

∑
i=1

P(Ei given F)

Further reading

For a more detailed treatment of probability we refer to chapters 1-3

from 3. Another excellent textbook is by 4 (chapters 1 and 2). The book of 3 Sheldon Ross. A First Course in Probability
8th Edition. Pearson, 2009
4 Joseph K Blitzstein and Jessica Hwang.
Introduction to probability. Chapman and
Hall/CRC, 2014

5 is less thorough but useful because it contains many solved exercises.

5 Murray R Spiegel, John J Schiller, and
R Srinivasan. Probability and statistics. New
York: McGraw-Hill„ 2013

Exercise 5

1. A box contains 3 marbles: 1 red, 1 green, and 1 blue. Consider

an experiment that consists of taking 1 marble from the box and

then replacing it in the box and drawing a second marble from

the box. Describe the sample space. Repeat when the second

marble is drawn without replacing the first marble.

2. A total of 28 percent ofAmericanmales smoke cigarettes, 7 percent

smoke cigars, and 5 percent smoke both cigars and cigarettes.

1. Whatpercentageofmales smokesneither cigars nor cigarettes?

2. What percentage smokes cigars but not cigarettes?

3. Suppose that you are playing blackjack against a dealer. In a

freshly shuffled deck, what is the probability that neither you nor

the dealer is dealt a blackjack?

4. Two fair dice are rolled. What is the conditional probability that at

least one lands on 6 given that the dice land on different numbers?

5. Two cards are randomly chosen without replacement from an

ordinary deck of 52 cards. Let B be the event that both cards are

aces, let As be the event that the ace of spades is chosen, and let

A be the event that at least one ace is chosen. Find

1. P(B given As)

2. P(B given A)



47

6. An ectopic pregnancy is twice as likely to develop when the

pregnant woman is a smoker as it is when she is a nonsmoker.

If 32 percent of women of childbearing age are smokers, what

percentage of women having ectopic pregnancies are smokers?

7. Ninety-eight percent of all babies survive delivery. However, 15

percent of all births involve Cesarean (C) sections, and when a C

section is performed, the baby survives 96 percent of the time. If

a randomly chosen pregnant woman does not have a C section,

what is the probability that her baby survives?

8. Suppose that each child born to a couple is equally likely to be a

boy or a girl, independently of the sex distribution of the other

children in the family. For a couple having 5 children, compute

the probabilities of the following events:

1. All children are of the same sex.

2. The 3 eldest are boys and the others girls.

3. Exactly 3 are boys.

4. The 2 oldest are girls.

5. There is at least 1 girl.
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